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Abstract. We present an analysis of the m2
s-corrections to Cabibbo-suppressed τ -lepton decays employing

contour improved resummation within an effective scheme which is an essential new feature as compared to
previous analyses. The whole perturbative QCD dynamics of the τ -system is described by the β-function
of the effective coupling constant and by two γ-functions for the effective mass parameters of the strange
quark in different spin channels. We analyze the stability of our results with regard to high-order terms
in the perturbative expansion of the renormalization group functions. A numerical value for the strange
quark mass in the MS scheme is extracted: ms(Mτ ) = 130 ± 27exp ± 9th MeV. After running to the scale
1GeV this translates into ms(1GeV) = 176 ± 37exp ± 13th MeV.

1 Introduction

The τ -system offers the possibility to confront QCD with
experiment in the low-energy region. The high precision
of experimental data and good accuracy of theoretical re-
sults make τ -physics an important testing ground for QCD
[1–3]. Theoretically the observables of the τ -system are
related to the moments of the spectral density of a corre-
lator of hadronic currents which can reliably be calculated
within perturbation theory [4–6]. Therefore, the τ -system
observables were extensively studied during the past few
years within the operator product expansion (OPE),
which is a general approach to analyzing the properties of
current correlators [7–11]. The perturbation theory (PT)
series in QCD appear to be asymptotic and the ultimate
accuracy they can provide depends on the concrete numer-
ical value of the expansion parameter: the strong coupling
constant αs(E) at a relevant energy E. This limits the the-
oretical accuracy which can be obtained within the finite
order perturbation theory (FOPT) analysis. In the case
of the τ -system the strong coupling constant αs(Mτ ) is
not small at the scale of the τ -lepton mass Mτ , which can
lead to an asymptotic growth of terms of the perturbation
theory series already at a rather low (third-fourth) order
of PT expansion. Judging from the analysis of the mo-
ments of the hadronic spectral density in the finite energy
interval (0,M2

τ ), within finite order perturbation theory
there are strong indications that the ultimate theoreti-
cal accuracy for the τ -lepton decay observables has al-
ready been reached at next-to-next-to-next-to-leading or-
der (N3LO) or α3

s , which is the highest order of PT ex-

pansions presently available [12]. The convergence behav-
ior of the perturbation series for the τ -lepton observables
depends on the region of the spectral density which is be-
ing probed: if the low-energy region is suppressed (as for
high moments of the spectral density) the asymptotic limit
of the series moves to higher order terms. The expansion
of the correlator in m2

s makes the explicit convergence
of the PT series for the coefficient functions of consec-
utive m2

s-corrections slower [13]. The reason for such a
behavior is quite obvious: higher order terms of the m2

s

expansion of the correlator are more sensitive to the low-
energy region of integration in Feynman diagrams that is
not described by perturbation theory. Thus, the PT ex-
pansions for observables in the τ -system seem to be at
the edge of asymptotic growth in the N3LO. At the same
time, the present accuracy of experimental data for some
observables of the τ -system is already comparable with
the ultimate theoretical accuracy reachable in FOPT [2,
3]. This raises the problem of obtaining more precise the-
oretical formulas. Higher order terms of FOPT (though
they are very desirable and provide additional informa-
tion) will not give more precise results for the PT series
if the asymptotic limit is already reached and must sim-
ply be discarded in FOPT applications. To catch up with
improving experimental accuracy it is necessary to find
a way of interpretation of the perturbation theory series
that allows one to reach a theoretical precision compara-
ble to that of the experimental data. One possibility to
extract numerical results from a perturbation theory se-
ries which is explicitly divergent at finite orders is to apply
a resummation procedure (see e.g. [14]). This is more so-
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phisticated than just summing the consecutive terms of
the perturbative expansion up to some finite order, but it
requires some knowledge (or assumptions) about the be-
havior of an infinite number of terms of the expansion.
The choice of a resummation procedure is not unique and
there are many ways to resum or improve the convergence
of an asymptotic series; see e.g. [15,16]. We think that
there are two important criteria for the choice of an ap-
propriate resummation procedure for perturbation theory
series of physical observables: the renormalization group
structure of the PT series should be respected and the def-
inition of the effective parameters used for the description
of the observables should be physically motivated. Led by
these two criteria we use contour improved perturbation
theory (CIPT) [10,17] (see also [18]) in an effective scheme
(not MS) to resum perturbation theory contributions in
all orders. Within CIPT, the procedure of resummation is,
however, not unique. A freedom in the choice of different
renormalization schemes still remains within CIPT, which
will affect the final numerical results [19]. We choose an
effective scheme which we consider to be natural and the
simplest one for the τ -system. Note that the choice of an
adequate scheme is also dictated by the way the system is
to be described. In the FOPT analysis of the moments, the
contour integration is completely (mathematically) equiv-
alent to the integration along the physical cut. Therefore,
the basic object for FOPT analysis is the PT spectral
density of the correlator which determines the effective
coupling in this procedure [12]. In CIPT, the correlator
is the basic perturbation theory object which is naturally
normalized in the Euclidean domain. Within the effective
scheme approach all PT corrections to the correlator are
absorbed into the definition of the effective parameters of
the system [20–25]. In the massless case the effective cou-
pling constant is the only relevant parameter. If the ms-
corrections to the correlator are included, then two addi-
tional parameters m2

q and m2
g related to mass corrections

to the different spin structures of the correlator should be
considered. These parameters are perturbatively related
to a finite strange quark mass. In the massless case the ef-
fective scheme resummation analysis along these lines was
done in [19]. In this paper the resummation analysis in the
effective scheme is extended to m2

s-corrections. An analy-
sis of the m2

s-corrections within CIPT in the MS scheme
was previously performed in [26,27]. Our results of resum-
mation within the effective scheme approach confirm the
main conclusions of [26] and are consistent with the results
of [27], though a direct comparison is a bit complicated be-
cause we use a different parameterization of the relevant
observables. We also use different moments for the final
determination of a numerical value for ms as compared
to [27]; a detailed discussion of our choice is given in the
text. The uncertainty of our new results is smaller than
the conservative error bars given in [26] on the basis of an
analysis of the explicit convergence of PT series. In order
to get an understanding of the reliability of our present
procedure we evaluate the stability of our results with re-
gards to higher order corrections to the renormalization
group functions.

This paper is organized as follows. In Sect. 2 we set the
stage for resummation in an effective scheme. We define
our basic quantities and calculate their respective anoma-
lous dimensions (beta-functions); these determine the run-
ning along the integration contour. The known results of a
PT calculation in the MS scheme are used but the expres-
sions for the corresponding renormalization group (RG)
functions of the effective parameters are new and specific
for the effective scheme defined in this paper. In Sect. 3
we present the results of theoretical calculations of the
moments of the spectral density of the τ -decays in the
effective scheme. The PT expressions are given in the ef-
fective scheme, which is a new result. We introduce the
effective mass parameters for the channels with spin 1 and
spin 0 and give explicit formulas expressing these param-
eters through the standard MS mass ms in a resummed
form. Some non-PT corrections are taken at the leading
order only and are therefore scheme independent: they co-
incide with the results already published in the literature
(see, e.g. [27]). In Sect. 4 we extract a numerical value for
the strange quark mass from the experimental data and
compare our results with the conclusions of earlier anal-
yses. Section 5 gives our conclusion. In an appendix the
RG functions of the effective scheme are explicitly given
through the coefficient of the MS scheme RG functions
known from the literature.

2 Resummation in an effective scheme

In the first step of our analysis of the τ -system, we define
an effective scheme in which all higher order PT correc-
tions to the correlator of hadronic currents are absorbed
into the effective coupling and two effective mass scales, or
two coefficient functions of the mass corrections. If such a
scheme is used for describing the τ -system the only pertur-
bative objects are one effective β-function for the coupling
constant and two effective γ-functions for the coefficient
functions of the mass corrections. Using these three func-
tions we determine the evolution of the effective coupling
and of the two coefficient functions of the mass correc-
tions on the contour in the complex plane of the squared
momentum. Within our procedure the β- and γ-functions
are treated as exact functions, which is a standard un-
derstanding of renormalization group (RG) summation.
Having the explicit solutions for the running coupling and
the mass coefficient functions in our hand we determine
observables such as the moments of the decay rate sim-
ply by integrating the coefficient functions with a weight
function specific to a chosen observable.

2.1 Definition of an effective scheme

The basic theoretical quantity for describing the τ -
semileptonic decays is the correlator of two hadronic cur-
rents,

Πµν(q) = i
∫

dxeiqx〈Tjµ(x)j†ν(0)〉
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=
Nc

6π2 (qµqνΠq(q2) + gµνΠg(q2)), (1)

with jµ(x) = ūγµ(1 − γ5)s. Here Πq(q2) and Πg(q2) are
scalar invariant functions, and Nc = 3 is the number of
colors in QCD. We work within QCD with three light
quarks. The correlator is normalized to unity in the lead-
ing (parton model) approximation with massless quarks.
By expanding Πq(q2) and Πg(q2) in terms of powers of
m2

s/q
2 and keeping only the first order term in this ex-

pansion one has

Πq(q2) = Π(q2) + 3
m2

s

q2
Πmq(q2), (2)

Πg(q2) = −q2Π(q2) +
3
2
m2

sΠmg(q2), (3)

where Π(q2) is an invariant function already known from
the mass zero case. The functions Πi(Q2) (i = mq,mg)
with Q2 = −q2 are computable in perturbation theory
in the deep Euclidean region Q2 → ∞. The results of
perturbation theory calculations for the correlator given
in (2) and (3) were obtained in [28–31] and have already
been used in the FOPT analysis [12].

We define new effective quantities a, m2
q, m2

g such that
all information from perturbation theory calculations for
the functions Π(Q2), Πmq,mg(Q2) is absorbed into the
evolution of these new quantities, which is determined by
the effective β- and γ-functions. For the mass corrections
we introduce two different coefficient functions (we some-
times call these the effective mass parameters) because
the correlator in (1) is not transverse if corrections of the
order m2

s are taken into account. Our definitions of the
effective quantities a, m2

q, m2
g are

−Q2 d
dQ2Π(Q2) = 1 + a(Q2),

−m2
s(M2

τ )Q2 d
dQ2Πmg(Q2) = m2

g(M2
τ )Cg(Q2), (4)

m2
s(M2

τ )Πmq(Q2) = m2
q(M2

τ )Cq(Q2).

Here Cq,g(Q2) are coefficient functions of the mass correc-
tions. They are conveniently normalized by the require-
ment Cq,g(M2

τ ) = 1.
In terms of the MS scheme quantities αs ≡ αs(M2

τ )
and ms ≡ ms(M2

τ ) the effective parameters in (4) read

a(M2
τ ) =

αs

π
+ k1

(αs

π

)2
+ k2

(αs

π

)3
+ k3

(αs

π

)4

+ O(α5
s ), (5)

m2
g(M2

τ ) = m2
s(M2

τ )
(

1 +
5
3
αs

π
+ kg1

(αs

π

)2

+ kg2

(αs

π

)3
+ O(α4

s )
)
, (6)

m2
q(M2

τ ) = m2
s(M2

τ )
(

1 +
7
3
αs

π
+ kq1

(αs

π

)2

+ kq2

(αs

π

)3
+ O(α4

s )
)
. (7)

Numerical values for the coefficients k3, kq2 are unknown,
though their estimates within various approaches can be
found in the literature. We have explicitly written the first
coefficients for the mass corrections, kg0 = 5/3, kq0 =
7/3. Further references concerning numerical values for
the known coefficients k1,2, kg1,g2, kq1 are given in the
Appendix.

2.2 Running of the effective coupling a(Q2)
and the mass coefficient functions Cq,g(Q2)

The behavior of the effective coupling a(Q2) and the co-
efficient functions of the mass parameters Cq,g(Q2) is de-
termined by the effective beta- and gamma-functions. The
defining RG equations for the evolution of these effective
quantities are

Q2 d
dQ2 a(Q

2) = β(a), (8)

Q2 d
dQ2Cg(Q2) = 2γg(a)Cg(Q2), (9)

Q2 d
dQ2Cq(Q2) = 2γq(a)Cq(Q2). (10)

The RG functions β(a) and γg,q(a) describing the evolu-
tion of the parameters in the effective scheme can be ex-
pressed through the MS scheme RG functions (the stan-
dard β-function of the coupling constant and the mass
anomalous dimension γ) using the relations in (4), (5),
(6) and (7). The explicit formulas of such a RG transfor-
mation are given in the Appendix. Up to the relative order
α3

s the RG functions β(αs) and γ(αs) in the MS scheme
have been calculated in [32–34]. Under the RG transfor-
mation (5), (6) and (7) the MS scheme β- and γ-functions
are transformed into the effective β- and γ-functions (8),
(9) and (10). Note that the first two coefficients of the β-
function β0, β1 and the first coefficient of the γ-function γ0
are invariant under the RG transformations. Numerically
the RG functions of the effective parameters describing
the τ -system up to the order m2

s are given by

β(a) = −a2 (2.25 + 4a+ 11.79a2

+ a3 (−76.36 + 4.5k3)
)
, (11)

γg(a) = −a (1 + 4.027a+ 17.45a2

+ a3 (249.59 − k3)
)
, (12)

γq(a) = −a (1 + 4.78a+ 32.99a2

+ a3 (−252.47 − k3 + 3.38kq2)
)
. (13)

For the effective coupling in (4) we use the numerical
value a(M2

τ ) = 0.1445 [35] extracted from the τ -decay
rate into non-strange particles within the effective scheme
resummation procedure described in [19]. This value cor-
responds to the MS scheme value of the coupling constant
αs(M2

τ ) = 0.343, that is, a value a bit larger than the most
recent result obtained in the FOPT analysis of the τ -decay
rate into non-strange particles [35]. The PT series for the
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Fig. 1. Running of the effective
coupling a(φ) on a circular con-
tour in the complex plane cal-
culated at LO, NLO and NNLO
(left: real part; right: imaginary
part)

Fig. 2. Running of the mass
coefficient function Cq(φ) on a
circular contour in the complex
plane calculated at LO, NLO
and NNLO (left: real part; right:
imaginary part)

effective β-function in (11) explicitly converges well at the
numerical value a(M2

τ ) = 0.1445. If the coefficient k3 lies
in the range 0 < k3 < 50 (which is a conservative esti-
mate based on a number of predictions) the a3 coefficient
in (11) will not be extremely large, but nevertheless the
β-function (11) shows asymptotic growth in the N3LO for
k3 > 35. The γg-function in (12) behaves worse than the
β-function but still the explicit convergence persists up
to the NNLO at a(M2

τ ) = 0.1445. The N3LO correction
will show asymptotic growth for values of k3 smaller than
129. The γq-function in (13) has already shown asymp-
totic growth in the NNLO, which will limit the precision
of our results. The β- and γg-function will show asymp-
totic growth in the N3LO, because no choice of k3 can
make them convergent simultaneously. This confirms the
conclusions of [12] where the asymptotic growth for the
FOPT expressions of the moments of the spectral density
has been found in N3LO independently of the choice of
the numerical value for k3. In other words, the evolution
of the effective parameters for the τ -system is too differ-
ent to be handled by the FOPT expressions for the RG
functions in the N3LO.

The running of the effective coupling and the mass co-
efficient functions Cq,g(Q2) along the contour in the com-
plex plane of the momentum squared is determined by
the renormalization group equations. It is convenient to
choose a circular contour in the complex Q2-plane and to
parameterize it by the relation Q2 = M2

τ eiφ, −π < φ < π,
which leads to the differential equations for the coupling
constant:

−i
d
dφ
a(φ) = β(a(φ)), a(φ = 0) = a(M2

τ ), (14)

and for the coefficient functions Cn(φ):

−i
d
dφ
Cn(φ) = 2γn(a(φ))Cn(φ), Cn(φ = 0) = 1, (15)

with n = q, g. The solution to the differential equation
for the running mass in terms of the coefficient functions
Cn(φ) in (15) can be expressed through the integral

Cn(φ) = exp

(
2i
∫ φ

0
γn(a(χ))dχ

)
. (16)

The initial values for a(φ) and Cn(φ) are fixed atQ2 = M2
τ

or φ = 0. All corrections stemming from higher order per-
turbative terms are absorbed into the β- and γ-function
coefficients if the effective scheme is used as it is defined in
(4). The solutions to the differential equations for the cou-
pling a(φ) (14) and for the coefficient function Cq(φ) (15)
are shown in Figs. 1 and 2. The effective coupling a(φ) does
not uniformly change much on the contour when higher
order corrections of the β-function are included. Especially
the change from NLO to NNLO is rather small. The be-
havior of the coefficient function Cg(φ) is rather similar to
that of the effective coupling a(φ) as one can expect from
the structure of PT series for γg(a) in (12) in comparison
with the β-function in (11). The function Cg(φ) appears
to converge uniformly in the interval |φ| < π when go-
ing from NLO to NNLO. The function Cq(φ) (Fig. 2) does
not converge uniformly on the contour because of the slow
convergence of the γq-function (13) in consecutive orders
of the PT expansion.

2.3 Resummation

We use the direct generalization of the resummation pro-
cedure described for the massless case in [19]. We treat
the renormalization group functions β(a) and γn(a) in
any fixed order of PT (LO, NLO and NNLO) as exact
functions and solve exactly (though numerically) the dif-
ferential equations (14) and (15) for the running parame-
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ters a(φ) and Cq,g(φ) on a circular contour in the complex
plane.

Having available the solutions for the running param-
eters, we calculate numerical values for the theoretical ex-
pressions of the observables in the τ -system. The observ-
ables of interest are expressed through the moments of
the spectral density of the basic correlator given in (1).
For the massless part of the correlator Π(q2) given in (2)
and (3) we define the moments of the spectral density by
the relation

M(n) = (n+ 1)
i

2π

∮
Π(q2)

(
q2

M2
τ

)n dq2

M2
τ

= 1 + (−1)n 1
2π

∫ π

−π

ei(n+1)φa(φ)dφ

+
1
2π

∫ π

−π

a(φ)dφ. (17)

For the mass correction related to the g-part of the cor-
relator the expressions for the moments are very similar.
One has

Mg(n) =
(−1)n

2π

∫ π

−π

ei(n+1)φCg(φ)dφ+
1
2π

∫ +π

−π

Cg(φ)dφ.

(18)
For the mass correction in the q-part of the correlator we
use the definition of the physical moments given in [12].
The corresponding expression on the contour reads

Mph
q (n) = (−1)n+1 1

2π

∫ π

−π

Cq(φ)einφdφ. (19)

The moments of the massless partM(n) and the mass cor-
rections Mq,g(n) are the basic objects which can be calcu-
lated theoretically. Our qualitative conclusions about the
stability of the running parameters due to the higher order
corrections to the β- and γ-functions are confirmed by the
behavior of the moments. The moments of the massless
spectral density given in (17) are stable with regard to in-
clusion of higher order corrections of the β-function. This
is a direct consequence of the β-function behavior in con-
secutive orders of PT along the integration contour plotted
in Fig. 1. The moments of the g-part given in (18) are less
stable with regard to inclusion of higher order corrections
of the γg-function than the moments of the massless part.
The moments of the q-part in (19) behave worse in higher
orders than the moments of the g-part, which reflects the
slower convergence of the γq-function in (13) as compared
to the γg-function in (12). In the massless and in the g-part
the values of the moments are dominated by the second in-
tegral in (17) and (18) because the values of the integrals
with oscillating integrands in (17) and (18) decrease for
high order moments. The coefficient functions Cq,g(Q2)
depend on the γq,g-functions exponentially according to
(16) and they are very sensitive to the convergence of the
γq,g-functions. The exponential dependence of the mass
coefficient functions on the RG functions is an essentially
new feature of the analysis of the m2

s-corrections as com-
pared to that of the massless part of the τ -lepton decay
rate. Such a strong dependence requires a more accurate
treatment of the PT series for the RG functions.

3 Determination of ms from τ -decays

One of the important aims of the analysis of Cabibbo-
suppressed τ -decays is the extraction of a numerical value
for the mass parameter ms. Various observables can be
used for this purpose. Here we consider the τ -lepton total
decay rate into hadrons. Experimental data for Cabibbo-
suppressed hadronic τ -decays are not yet very precise.
Contrary to the experimental data the theoretical expres-
sions for the relevant observables related to the moments
of the spectral density of the correlator of the hadronic
currents are known rather precisely in the sense that the
corresponding PT series within OPE are calculated in high
(next-to-next-to-leading) orders of expansion in the strong
coupling constant. However, this theoretical accuracy is
quite formal, because the explicit convergence of the PT
expressions for the moments is rather slow and the PT
series has to be resummed in order to obtain numerical
results.

The theoretical expression for the m2
s-corrections to

the moments (k, l) of the differential decay rate is given
by the contour integral in the complex q2-plane:

Rkl
mτ =

i
2π

∮
2
(

1 − q2

M2
τ

)2+k (
q2

M2
τ

)l

× 3
(
m2

sΠmq(q2)
q2

− m2
s

M2
τ

Πmg(q2)
)

dq2

M2
τ

= −6

(
m2

q

M2
τ

Akl +
m2

g

M2
τ

Bkl

)

= −6
m2

s

M2
τ

(ωqAkl + ωgBkl) = −6
m2

s

M2
τ

Fkl, (20)

where the superscript (k, l) denotes an integration with
additional weight factors which suppress the high (k >
0, l = 0) and low (k = 0, l > 0) energy region. The finite
order PT expressions for the coefficients Fkl can be found
in [12,26]. The analyses performed in [12,26] in FOPT and
CIPT within resummation in the MS scheme have demon-
strated that the explicit convergence of the PT series for
the moments is slow. An analogous conclusion about the
convergence of PT series in the MS scheme was given in
[27]. Therefore, in the present paper we use the contour
resummation procedure in the effective scheme and calcu-
late the relevant coefficients Fkl in a closed form.

We use the (0, 0) moment as our best theoretical es-
timate for comparison with experiment. Other moments
are briefly discussed but are not used in numerical analysis
for the strange quark mass determination. The choice of
optimal moments is discussed in detail later. In brief, the
reasoning is based on analyzing which energy regions sat-
urate the respective moments. Indeed, to choose a special
linear combination of moments is equivalent to integrat-
ing the running parameters with a special weight function.
Whether the corrections to a given linear combination are
large or small can depend strongly on the integration re-
gion in which the integral of the spectral density is satu-
rated. The change of the running parameters with higher
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order corrections is big in the region close to the phys-
ical cut (at φ = ±π) and small in the deep Euclidean
region where the functions are fixed by their starting val-
ues. If some observables have the regions φ = ±π strongly
suppressed they have no contribution from the perturba-
tive running and, therefore, are very stable with regard to
the inclusion of higher order terms of RG functions. The
moments of the type (k, 0) represent such observables for
large k. However, these moments have the contributions
from the large energy region strongly suppressed and re-
ceive relatively large contributions from the low-energy
region that makes them rather non-perturbative. There-
fore, the use of the moments (k, 0) with large values of k
is not under reliable quantitative control within OPE and
perturbation theory, though their use is favorable from the
point of view of the precision of the experimental data. We
elaborate on this point later.

3.1 Relation of the MS mass
to effective mass parameters

Within the effective scheme approach the τ -system is de-
scribed in its own terms with the mass parameters mq,g.
In order to obtain a numerical value for ms which can be
compared with other determinations, we express the natu-
ral mass parameters of the τ -system mq,g through the MS
mass parameter ms. We emphasize that this is only done
for purposes of comparison. In principle, observables in
the τ -system are best described by their internal parame-
ters a,mq and mg. Relations between observables within
the τ -system can be found without any reference to the
standard MS scheme parameters.

In general, the perturbation theory expression for a
given observable in a given renormalization scheme is pa-
rameterized by a mass scale and by the coefficients of the
evolution (RG) functions. In the massless case these are
the scale parameter Λ and the perturbation theory coeffi-
cients of the β-function (e.g. [36,37]). In the massive case
there are in addition the invariant mass M to be defined
in (21) and the coefficients of the γ-function describing
the evolution of the running mass. As in the case of the
scale parameter Λ, the invariant massM can be defined in
different ways. The concrete definition may be fixed by a
given asymptotic behavior at large momenta. This is the
way the standard scale parameter ΛMS is fixed. We define
the invariant mass M in a µ independent way by writing

M =
m(µ2)

a(µ2)γ0/β0
exp

{
−
∫ a(µ2)

0

(
γ(ξ)
β(ξ)

− γ0
β0ξ

)
dξ

}
.

(21)
Note that M is renormalization group invariant. That
means that if m(µ2) is redefined by some RG transforma-
tion the change is absorbed by the corresponding change
of the γ-function so that M remains invariant up to the
order in the coupling which has been taken into account.
The RG invariance of M can be used to relate the run-
ning masses defined in different renormalization schemes.
After squaring (21) we find the relation between two mass

definitions in different schemes with the γ-functions γ(a)
and γ′(a) expressed in terms of the same coupling a. In
our analysis we use the effective coupling a as it is defined
in (4) and relate m2

n (n = q, g) to m′2
s by

m2
n(µ2) = m′2

s(µ2) exp

{
−2
∫ a(µ2)

0

γ′(ξ) − γn(ξ)
β(ξ)

dξ

}
.

(22)
Here m′2

s is the standard MS scheme mass, but with the
evolution function γ′(a) expressed through the effective
coupling. Equation (22) relates two mass parameters de-
fined in different renormalization schemes but expressed
through the same coupling. Therefore, the standard γ-
function of the MS mass should be rewritten in terms of
the effective parameter a before use in (22). It is also pos-
sible to use (21) written in the MS scheme and in the ef-
fective scheme. Then one determines the relation between
mq,g andms by eliminating the invariant massM directly:

m2
n(µ2)

m2
s(µ2)

=
(
an(µ2)
aMS(µ2)

)2γ0/β0

× exp

{
−2
∫ aMS(µ2)

0

(
γMS(ξ)
βMS(ξ)

− γ0
β0ξ

)
dξ

}

× exp

{
2
∫ an(µ2)

0

(
γn(ξ)
βeff(ξ)

− γ0
β0ξ

)
dξ

}
. (23)

In our case the effective couplings an, n = q, g are equal
to the same coupling a for both masses mq,g. The two
procedures described above lead to close numerical values
for the coefficients ωq,g, relating the effective mass param-
eters mq,g to the MS scheme mass ms. The difference of
the numerical values for ωq and ωg obtained from the two
procedures described by (22) and (23) turns out to be less
than 3%, which is the residual scheme dependence of the
results. Equations (22) and (23) allow us to express the in-
ternal parameters mq,g through the standard MS scheme
parameter ms (see (6) and (7), and (9) and (10)). Finally,
we find for the coefficients ωq,g relating the effective mass
parameters mq,g to the reference MS mass ms

mq = ωqms, mg = ωgms,

ωq = 1.73 ± 0.04, ωg = 1.42 ± 0.03. (24)

The numerical values for the coefficients ωq,g are not close
to unity, which shows that perturbation theory corrections
for observables in the τ -system are rather large in the MS
scheme. The FOPT expansion for the coefficients ωq,g has
been obtained in [12]. This expansion converges slowly,
which forces us to use the exact RG conversion given in
(22) and (23).

3.2 Power corrections
from dimension D = 4 condensate terms

For the determination of ms one needs not all D = 4 con-
densate corrections to the theoretical expression for the
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τ -lepton decay rate, but only those that enter the differ-
ence

δRkl
τ =

Rkl
τs=0

|Vud|2 − Rkl
τs=1

|Vus|2 . (25)

Here Rkl
τs=0,1 is defined as

Rkl
τs=0,1 =

∫ M2
τ

0
ds
(

1 − s

M2
τ

)k (
s

M2
τ

)l dRτs=0,1

ds
, (26)

and dRτs=0,1/ds is the differential τ -decay rate into the
final hadronic states with the strangeness 0, 1 and the en-
ergy s1/2. In the theoretical expression for the difference
δRkl

τ we neglect terms of the order m3
s/M

3
τ , set the u-

and d-quark masses to zero, and retain only the most im-
portant term linear in ms (cf. [26,27]). Within OPE the
coefficient of this term is given by the quark condensate.
The final result reads

δRkl
τ = NcSEW

(
6
m2

s

M2
τ

Fkl − 4π2ms

Mτ

〈s̄s〉
M3

τ

Tkl

)
, (27)

where Nc = 3, ms ≡ ms(M2
τ ), and SEW = 1.0194 de-

scribes the electroweak corrections [38,39]. The coefficient
function of the D = 4 local operator mss̄s is taken in
the leading order of perturbation theory expansion within
OPE. In this approximation for the coefficient function
the quantities Tkl multiplying the quark condensate are
given by the expression

Tkl = 2 (δl,0(k + 2) − δl,1) . (28)

The numerical values for the first few coefficients Tkl read

T00 = 4, T10 = 6, T20 = 8, T01 = −2, T11 = −2.
(29)

These results agree with the leading order expressions for
the coefficients given in [27]. We have set up all ingredi-
ents necessary for the evaluation of (27). Table 1 gives the
coefficients of the q- and g-mass parameters in (20).

4 Numerical analysis
and the choice of moments

Having available theoretical expressions for all moments
we still need to optimize the choice for comparison with
experiment and extraction of the numerical value for the
strange quark mass. As was mentioned above, the theo-
retical expressions for the moments (0, l), l > 0 are more
reliable from the point of view of perturbation theory
than those for the moments (k, l) with non-zero k (a de-
tailed discussion of this point is given below). However,
the experimental precision is worse for the moments (0, l)
with large l, because such moments are saturated by the
contributions of many-particles hadronic states, which is
difficult to measure (see Table 2). Note that some many-
particles hadronic state contributions in the experimental
data (for instance, the K4π contribution) are represented
by a result of a Monte Carlo simulation rather than direct

Table 1. Coefficients of (20)

(k, l) ALO
kl ANLO

kl ANNLO
kl BLO

kl BNLO
kl BNNLO

kl

(0, 0) 1.361 1.445 1.434 0.523 0.601 0.625
(1, 0) 1.568 1.843 1.976 0.441 0.552 0.601
(2, 0) 1.762 2.282 2.646 0.390 0.530 0.607

(0, 1) −0.207 −0.398 −0.542 0.082 0.050 0.025

measurements. Therefore, we use the moment (0, 0) as our
best choice from both the experimental and theoretical
point of view. The theoretical expression for this moment
exhibits a rather good convergence in consecutive orders
of perturbation theory, and the accuracy of experimental
data for it is still acceptable in comparison with higher
(0, l) moments. Note that the perturbative convergence is
the main concern of the theoretical analysis in both the
massless and the massive case. In the massless case the
non-perturbative corrections are small if factorization is
used for the four-quark condensates [11,40,41].

4.1 Numerical value for the strange quark mass

The coefficients Akl are related to the q-part of the cor-
relator. This part contains contributions from spin 0 and
spin 1 particles. The spin 0 piece is prone to possible non-
perturbative contributions of (direct) instantons and per-
turbation theory expansions are expected to break down
in low orders in this channel. However, this is only a gen-
eral expectation without strict quantitative estimates of
applicability of PT. The coefficients Bkl are related to the
g-part of the correlator. The g-part contains only contribu-
tions of spin 1 particles. Non-perturbative contributions of
(direct) instantons are forbidden in this channel by sym-
metry considerations. The coefficient Fkl of the m2

s term
in (27) is combined according to (20)

Fkl = ωqAkl + ωgBkl. (30)

As for the term linear in ms in (27), we calculate its nu-
merical coefficient using a phenomenological value for the
quark condensate. We use the relation [42–44]

〈s̄s〉 = (0.8 ± 0.2)〈ūu〉 (31)

and the numerical value 〈ūu〉 = −(0.23 GeV)3 which coin-
cides with the standard value (see e.g. [27]). Substituting
all necessary quantities into (27) we arrive at the defining
equation for X = ms/(130 MeV):

1
NcSEW

(
Mτ

130 MeV

)2

δRkl
τ = X (6Fkl ·X + 0.936 · Tkl) .

(32)
The dimension-four term contributes appreciably to the
total theoretical result for different moments. For the mo-
ments (k, 0) its relative contribution increases with k for
the first few moments. We use only the moment (0, 0) for
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Table 2. Results for ms(Mτ ) obtained from different moments
of δRτ

(k, l) (δRkl
τ )exp ms(M2

τ )MeV

(0, 0) 0.394 ± 0.137 130
(1, 0) 0.383 ± 0.078 111
(2, 0) 0.373 ± 0.054 95

which the dimension-four contribution gives about 16% of
the total result. The coefficient function of the dimension-
four contribution converges well in the perturbative ex-
pansion within OPE. We do not take the PT corrections
to the coefficient function of the dimension-four contri-
bution into account (see e.g. [27]) because of the large
uncertainty in the numerical value of the strange quark
condensate in (31).

For the extraction of the numerical value for the
strange quark mass we use the experimental data obtained
by the ALEPH collaboration [2]. The results for ms(M2

τ )
from different moments δRkl

τ are given in Table 2. For the
determination of ms we use only the moment (0, 0) as
the most reliable one from the perturbation theory point
of view. A detailed discussion of the justification for our
choice is given later.

The final relation for determining the central value
of the strange quark mass from the data on Cabibbo-
suppressed τ -decays reads

1
NcSEW

(
Mτ

130 MeV

)2

(δR00
τ )exp

= 24.1 = X (20.2X + 3.74) . (33)

The result is X = ms/(130 MeV) = 1.00 . . . with an accu-
racy of two decimal places. This leads to our final predic-
tion for the strange quark mass at Mτ

ms(M2
τ ) = 130 ± 27exp ± 3〈s̄s〉 ± 6th MeV. (34)

Note that this result is obtained with the numerical value
for the effective coupling a(M2

τ ) = 0.1445 extracted from
the τ -decay rate into non-strange particles within the ef-
fective scheme resummation procedure described in [19].
The reference numerical value of the MS scheme coupling
constant is αs(M2

τ ) = 0.343.
We also give the value for ms(1 GeV) obtained from

ms(M2
τ ) in (34) after four-loop running in the MS scheme:

ms(1 GeV) = 176 ± 37exp ± 4〈s̄s〉 ± 9th MeV. (35)

The numerical value of the strange quark mass at the scale
1 GeV depends on the way the evolution is performed be-
cause of the truncation of the PT series for the RG func-
tions. This difference reflects the residual scheme depen-
dence of the evolution.

The numerical value for the invariant mass M defined
in (21) and calculated in the MS scheme with αs(M2

τ ) =
0.343 reads

M = 312 ± 65exp ± 7〈s̄s〉 ± 14th MeV. (36)

This value can be used for a comparison of the results
of the strange quark mass determination obtained from
different theoretical calculations and experimental data.
If the effective scheme is used for the determination of the
numerical value for the invariant mass M from (21) the
result is slightly different. This reflects the residual scheme
dependence due to the truncation of the PT series for β-
and γ-functions.

The results presented in (35) and (34) are the main
new numerical results of this paper. Another new result
is the formulation of the problem in an effective scheme
and the development of all the necessary techniques for
phenomenological applications.

Note that the uncertainty of the final result is smaller
than the difference between the results of the mass ex-
traction from the zeroth and second moment (first and
the last lines of Table 2). As we have mentioned before
and will explain in detail later on, we do not consider the
results obtained from the high moments as reliable; this
means that the theoretical uncertainties of the numerical
mass value m(1)

s = 111 MeV (from the first moment) and
m

(2)
s = 95 MeV (from the second moment) are expected to

be much larger than the uncertainty of our optimal choice,
the zeroth moment. Therefore, the results of all determi-
nations are consistent, but the uncertainty of the higher
moments is large. Our view is that after accounting for
high-dimension condensates the second and third determi-
nation will change (while the first one does not) and may
lie within the error bars. Since there is no reason to expect
the effect of high-dimension condensates to be negligible,
the requirement that the first and third determination are
the same implicitly implies that high-dimension conden-
sates are negligible, which is just an additional assumption
(without any justification). Because we do not use these
moments in our determination we do not quantitatively
discuss these uncertainties.

4.2 Comparison with other results

Our final result for the numerical coefficient in front of the
m2

s correction in (33) agrees with the estimate obtained
from the analysis in the MS scheme [26]. In the present
paper we find 20.2 ± 1.8 for the coefficient of the m2

s cor-
rection, while the final result of [26] with the conservative
estimate of the error bar is 18.1 ± 4.8. The final uncer-
tainty of the result obtained in [26] was determined from
both resummed and FOPT analyses. If only the CIPT
analysis in the MS scheme is used, then one obtains the
value 18.1±2.6, which has a smaller uncertainty [26]. The
present value 20.2 ± 1.8 results from the analysis in the
effective scheme with stricter criteria of convergence and
a more conservative error estimate; for instance, in the
final result for Fkl we have doubled the error for the coef-
ficients ωq,g from (24). However, the interpretation of the
perturbation series in a closed manner (resummation in
the effective scheme) allows one to reduce the uncertainty
of the theoretical expressions in comparison with the pre-
vious analysis in the MS scheme performed in [26]. This
leads to an essential reduction of the theoretical part of
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the error in the extracted numerical value for the strange
quark mass.

The analysis of mass corrections in the MS scheme was
also done in [27] where a very accurate account for known
PT corrections to the coefficient functions of non-PT cor-
rections was given. The direct comparison of our results
with [27] is not simple because different representations
have been chosen for the observables. Also some approxi-
mations have been used, which prevents us from directly
comparing with the results of the present paper at inter-
mediate stages. The final results for the mass extracted
from the zeroth order moment is rather close to the result
of [27]. Still, in general the results of [26,27] are rather
close to each other as regards the use of scheme, while the
change of the scheme was the main reason for our anal-
ysis, as it was for comparison with [26]. The analysis of
the present paper also extends the analysis of the scale
dependence which has been given in [27].

The resulting values of the strange quark mass are
close to the earlier estimates obtained in [45–48] with the
use of less accurate theoretical input formulas and less
precise experimental data. The recent analysis based on
(pseudo-) scalar correlators with a thorough parameteri-
zation of the experimental data gives a value close to ours
[49,50]. In a lattice calculation of the numerical value for
the strange quark mass [51,52] the theoretical input is of
non-perturbative nature. The recent results obtained in
lattice calculations are smaller than our value for ms, but
still inside the error bars as given in (34).

4.3 Choice of moments

High moments with the weight function (1−s/M2
τ )k (large

values of k) are saturated by non-perturbative (infrared,
or low-energy) contributions because the perturbative re-
gion of integration (large energy) is suppressed. On the
experimental side this means that such moments are sat-
urated by the contributions of low-lying resonances. In the
case considered, this is the contribution of the K meson
in the spin 0 channel and of the K1(1270)–K1(1400) sys-
tem in the spin 1 channel. The low-energy contributions
can be accurately measured; that makes the moments ob-
tained from the experimental data rather precise. On the
theoretical side, within the OPE calculation of the correla-
tor the infrared sensitivity of high-k moments means that
the PT contribution to such moments is suppressed and
the moments are saturated by the contributions of vac-
uum condensates of high-dimension operators. Implicitly
this is seen in the poor convergence of the PT series for
such moments which is demonstrated in [12]. To obtain
an accurate numerical value for such moments one has
to include vacuum condensates of high-dimension opera-
tors. However, numerical values for vacuum condensates
of the local operators with dimension larger than six are
completely unknown and are usually neglected in the τ -
system analyses. Therefore, high moments with the weight
function (1 − s/M2

τ )k have an uncontrollable admixture
of high-dimension condensates that makes them strongly
non-perturbative and, therefore, unreliable for practical

PT applications. Indeed, the moments (k, 0) obtain contri-
butions from all condensates up to dimension D = 2k+8,
the numerical values of which are unknown for large k.
Because on the experimental side this contribution corre-
sponds to the contribution of a low-lying resonance which
is not described by PT, it seems unjustified to neglect the
contributions from high-dimension condensates and use
only the PT expressions (supplemented by condensates
only up to dimension 6, which are available) for large k
moments. In the analysis presented in [27] the contribu-
tions from high-dimension condensates (with D > 6) were
regarded as an additional theoretical uncertainty. Note,
however, that the high-dimension condensates contribute
quite differently to the moments (k, 0) and (0, l) because
the integrals corresponding to these moments are satu-
rated by contributions of different energy regions. The
(0, l) moments for large l are saturated at large ener-
gies (of order Mτ ) and non-PT contributions described
by the high-dimension condensates within OPE are small.
In the leading order only one condensate is picked up by
integration for a (0, l) moment (assuming that the factor
(1 − s/M2

τ )2 is removed from the rate). On the contrary,
the (k, 0) moments for large k are saturated at small en-
ergies which correspond to the region of strong coupling:
these moments are dominated by the resonances. There-
fore the (k, 0) moments are definitely non-perturbative for
large k. Within the OPE paradigm this means that the
total contribution of high-dimension condensates is large
compared to the perturbative contribution. Indeed, all
condensates with dimension up to D = 2k + 8 contribute
to the (k, 0) moments and arrange themselves in a way so
as to reproduce contributions of the low-lying resonances
according to the standard phenomenology within OPE.
This situation is clearly seen in exactly solvable models
where all power corrections are known. In QCD, however,
numerical values of high-dimension condensates are not
known and the total contribution of high-dimension con-
densates cannot be quantitatively analyzed for large k mo-
ments though qualitative arguments are rather transpar-
ent. These reasons forced us to use only the (0, 0) moment
as the most reliable from the theoretical point of view,
even despite the fact that the experimental precision for
high k moments is better.

5 Conclusion

We have considered the m2
s-corrections in a QCD-based

description of the τ -system. We use a natural effective
scheme well suited for a contour improved perturbation
theory analysis. The quality of our results is determined
by the PT expansions of the effective β- and γ-functions
which are the only perturbative objects in our analysis.
The γq-function already shows an asymptotic growth at
NNLO while the β- and γg-functions still “converge” up to
this order. In our discussion of the N3LO terms of the PT
series for these functions (which depend on the unknown
parameter k3) we found strong indications for asymptotic
growth at this order. This shows that the ultimate theo-
retical limit of FOPT precision is already reached for the
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set of observables in the τ -system. This is not yet an ac-
tual problem of QCD because of the insufficient precision
of the experimental data on Cabibbo-suppressed τ -decays,
especially regarding the differential τ -decay rate. The ex-
perimental situation may, however, improve soon. Then
our procedure of using the effective scheme description of
the τ -system opens the possibility of high precision tests of
QCD, independently of an explicit convergence of the PT
series in the MS scheme. In this field an effective scheme
approach can show its real power because then the main
source of theoretical uncertainty, the relation of the inter-
nal mass parametersmq,mg to the MS parameterms, will
be eliminated. Note that for a QCD test within our ap-
proach it is necessary to relate four τ -observables to each
other because the three parameters a, mg and mq have to
be fixed.

Our result for the strange quark mass is ms(M2
τ ) =

130 ± 27exp ± 9th MeV, where we have linearly combined
into one number the pure theoretical error which is ba-
sically determined by the truncation of the PT series for
effective RG functions and the error due to the strange
quark condensate. After running to the scale 1 GeV we
obtain ms(1 GeV) = 176 ± 37exp ± 13th MeV. This is con-
sistent with the previous results where the resummation
was done in the MS scheme [26]. The large part of the
theoretical uncertainty of our result for the PT coefficient
of m2

s term comes from re-expressing the effective quan-
tities in terms of the MS scheme parameters. The advan-
tage of the procedure presented here is that the estimate
of the accuracy is not based on the decomposition of the
result into terms coming from corrections to the correla-
tor in the MS scheme. This decomposition seems unnat-
ural in resummed perturbation theory as it introduces an
additional uncertainty related to the convergence of the
series for the correlator in the MS scheme every term of
which is given by a closed expression resulting from the re-
summation along the contour. Within the effective scheme
approach all sources of uncertainty are collected into the
effective β- and γ-functions which are the only PT quanti-
ties entering into the analysis, that provides a solid ground
for estimating the accuracy of theoretical expressions.
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Appendix

We give the expressions for the effective β- and γ-function
coefficients in terms of the standard MS scheme results.
In this Appendix the coefficients of the β- and γ-functions
without upper index stand for MS quantities, while the
coefficients with upper index “eff” denote the coefficients
of the effective functions.

The coefficients of the effective β-function (8) are given
by

βeff
0 = β0, βeff

1 = β1,

βeff
2 = β2 − k1β1 + (k2 − k2

1)β0,

βeff
3 = β3 − 2k1β2 + k2

1β1 + (2k3 − 6k2k1 + 4k3
1)β0. (37)

For the effective γ-function coefficients of (9) and (10) in
terms of the MS scheme β- and γ-function coefficients we
find

γeff
n0 = γ0, γeff

n1 = γ1 − k1γ0 +
1
2
kn0β0,

γeff
n2 = γ2 − 2k1γ1 + (−k2 + 2k2

1)γ0 +
1
2
kn0β1

+
(

−k1kn0 + kn1 − 1
2
k2

n0

)
β0,

γeff
n3 = γ3 − 3k1γ2 + (−2k2 + 5k2

1)γ1
+ (−k3 + 5k2k1 − 5k3

1)γ0

+
1
2
kn0β2 +

(
−3

2
k1kn0 + kn1 − 1

2
k2

n0

)
β1

+
(

−k2kn0 +
5
2
k2
1kn0 − 3k1kn1 +

3
2
k1k

2
n0

+
3
2
kn2 − 3

2
kn1kn0 +

1
2
k3

n0

)
β0. (38)

Here knj with n = q, g stand for the coefficients of (6)
if n = g (kg0 = 5/3) and for the coefficients of (7) if
n = q (kq0 = 7/3). Numerical values for all necessary
coefficients in the MS scheme have been collected in [12],
where further references to original papers can be found.

References

1. Particle Data Group, Review of Particle Properties, Eur.
Phys. J. C 3, 1 (1998)

2. ALEPH collaboration, Z. Phys. C 76, 15 (1997); Eur.
Phys. J. C 4, 409 (1998); ibid. C 11, 599 (1999)

3. OPAL collaboration, Eur. Phys. J. C 7, 571 (1999)
4. C. Bernard, A. Duncan, J. LoSecco, S. Weinberg, Phys.

Rev. D 12, 792 (1975);
E. Poggio, H. Quinn, S. Weinberg, Phys. Rev. D 13, 1958
(1976)

5. R. Shankar, Phys. Rev. D 15, 755 (1977)
6. K.G. Chetyrkin, N.V. Krasnikov, A.N. Tavkhelidze, Phys.

Lett. B 76, 83 (1978)
7. K. Schilcher, M.D. Tran, Phys. Rev. D 29, 570 (1984)
8. E. Braaten, Phys. Rev. Lett. 53, 1606 (1988); Phys. Rev.

D 39, 1458 (1989)
9. S. Narison, A. Pich, Phys. Lett. B 211, 183 (1988)
10. A.A. Pivovarov, Sov. J. Nucl. Phys. 54, 676 ( 1991)
11. E. Braaten, S. Narison, A. Pich, Nucl. Phys. B 373, 581

(1992)
12. J.G. Körner, F. Krajewski, A.A. Pivovarov, Eur. Phys. J.

C 12, 461 (2000); ibid. C 14, 123 (2000)
13. K.G. Chetyrkin, R. Harlander, J.H. Kühn, TTP-99-42;
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